From BlenderWiki

Jump to: navigation, search

Writing mathematical formulas using latex syntax

You can now use latex syntax to write formulas!

Have a look at the examples below, and see http://meta.wikimedia.org/wiki/Help:Formula for a comprehensive help on the latex syntax you can use in the <math></math> tags.

Examples

Quadratic Polynomial

<math>ax^2 + bx + c = 0</math>
ax2 + bx + c = 0


Quadratic Polynomial (Force PNG Rendering)

<math>ax^2 + bx + c = 0\,\!</math>

ax^2 + bx + c = 0\,\!


Quadratic Formula

<math>x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}</math>

x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}


Tall Parentheses and Fractions

<math>
2 = \left(
\frac{\left(3-x\right) \times 2}{3-x}
\right)</math>

2 = \left( \frac{\left(3-x\right) \times 2}{3-x} \right)

<math>
S_{\text{new}} = S_{\text{old}} - \frac{ \left( 5-T \right) ^2} {2}
</math>

S_{\text{new}} = S_{\text{old}} - \frac{ \left( 5-T \right) ^2} {2}


Integrals

<math>\int_a^x \!\!\!\int_a^s f(y)\,dy\,ds
 = \int_a^x f(y)(x-y)\,dy</math>

\int_a^x \!\!\!\int_a^s f(y)\,dy\,ds = \int_a^x f(y)(x-y)\,dy


Summation

<math>\sum_{m=1}^\infty\sum_{n=1}^\infty\frac{m^2\,n}
 {3^m\left(m\,3^n+n\,3^m\right)}</math>

\sum_{m=1}^\infty\sum_{n=1}^\infty\frac{m^2\,n}{3^m\left(m\,3^n+n\,3^m\right)}


Differential Equation

<math>u'' + p(x)u' + q(x)u=f(x),\quad x>a</math>

u'' + p(x)u' + q(x)u=f(x),\quad x>a

Complex numbers

<math> |\bar{z}| = |z|,
 |(\bar{z})^n| = |z|^n,
 \arg(z^n) = n \arg(z)</math>

 |\bar{z}| = |z|, |(\bar{z})^n| = |z|^n, \arg(z^n) = n \arg(z)


Limits

<math>\lim_{z\rightarrow z_0} f(z)=f(z_0)</math>

\lim_{z\rightarrow z_0} f(z)=f(z_0)

Integral Equation

<math>\phi_n(\kappa) =
 \frac{1}{4\pi^2\kappa^2} \int_0^\infty
 \frac{\sin(\kappa R)}{\kappa R}
 \frac{\partial}{\partial R}
 \left[R^2\frac{\partial D_n(R)}{\partial R}\right]\,dR</math>

\phi_n(\kappa)
 = \frac{1}{4\pi^2\kappa^2} \int_0^\infty \frac{\sin(\kappa R)}{\kappa R}  \frac{\partial}{\partial R}  \left[R^2\frac{\partial D_n(R)}{\partial R}\right]\,dR


Example

<math>\phi_n(\kappa) = 
 0.033C_n^2\kappa^{-11/3},\quad
 \frac{1}{L_0}\ll\kappa\ll\frac{1}{l_0}</math>

\phi_n(\kappa) = 0.033C_n^2\kappa^{-11/3},\quad \frac{1}{L_0}\ll\kappa\ll\frac{1}{l_0}


Continuation and cases

<math>
 f(x) =
 \begin{cases}
 1 & -1 \le x < 0 \\
 \frac{1}{2} & x = 0 \\
 1 - x^2 & \mbox{otherwise}
 \end{cases}
 </math>

f(x) = \begin{cases}1 & -1 \le x < 0 \\
 \frac{1}{2} & x = 0 \\ 1 - x^2 & \mbox{otherwise}\end{cases}

Prefixed subscript

 <math>{}_pF_q(a_1,\dots,a_p;c_1,\dots,c_q;z)
 = \sum_{n=0}^\infty
 \frac{(a_1)_n\cdots(a_p)_n}{(c_1)_n\cdots(c_q)_n}
 \frac{z^n}{n!}</math>

{}_pF_q(a_1,\dots,a_p;c_1,\dots,c_q;z) = \sum_{n=0}^\infty \frac{(a_1)_n\cdots(a_p)_n}{(c_1)_n\cdots(c_q)_n}\frac{z^n}{n!}

Fraction and small fraction

<math> \frac {a}{b}\  \tfrac {a}{b} </math>

 \frac {a}{b} \tfrac {a}{b}